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Abstract

This paper has two key contributions. The first contribution is a systematic procedure for fitting
an envelope of models which captures a range of possible blood glucose level (BGL) responses
for a particular individual having Type 1 diabetes. An important aspect of the procedure is that it
requires minimal testing on the individual. Moreover, the testing can be carried out by the indi-
vidual at home. The developed envelope of models, termed ‘Metabolic Digital Twin Envelope’
(MDTE) takes into account the quantification of possible errors including those arising from
utilising a simplified model (commonly called “bias” errors) and those arising from unmodelled
disturbances and noise (commonly called “variance” errors). The second, and most important,
contribution is a methodology that allows convex optimisation to be used to develop an insulin
injection policy which minimises mean square peak BGL whilst ensuring that there is a strict
lower bound on the probability of hyperglycaemic events. The optimisation methodology is
posed as a stochastic design strategy based on using the probabilistic models for each individual
afforded by the MDTE.

Keywords: medical control systems, Type 1 diabetes mellitus, stochastic strategies for diabetes
management, blood glucose regulation, insulin bolusing, diabetes modelling and estimation,
system identification, stochastic embedding

1. Introduction

Stochastic optimisation incorporating chance constraints has been widely discussed in many
engineering areas and, specifically, in recent control theory literature, see e.g., [1, 2, 3]. The
importance of this idea has also been recognised in the management of Type 1 Diabetes Mel-
litus (T1DM). For example, work reported in [4, 5, 6, 7, 8, 9] proposed a stochastic modelling
framework and a methodology for stochastic targeted glycemic control for critically ill patients.
It is a natural choice in the context of T1DM management since targets and constraints are often
stated in a probabilistic setting (e.g., percentage of time in normoglycaemic or hypoglycaemic
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range, etc.) A key contribution of the current paper is to develop a systematic design procedure
which trades off average peak BGL versus the probability of having a hypoglycaemic event.

We use the notion of ‘digital twins’ to formalise and answer this problem. In this context,
a digital twin associated with a physical system is a mathematical model that represents the
system. We note that the idea of digital twins is ubiquitous in engineering. For example all
engineering designs utilise computer models that represent the object to be designed. Models
appear in essentially every area, e.g., aircraft design, automobile engine design, bridge design,
etc. The idea of digital twins is also gaining traction in medicine [10], [11].

Our use of the term “metabolic digital twin” is quite specific. Our goal is to utilise the notion
of a digital “twin” to corroborate and extend insights arising from contemporary research in the
area of T1DM management.

We pay particular attention to the impact of potential errors in the digital twins. In particular,
we describe an envelope of possible twins, which we term the Metabolic Digital Twin Envelope
(MDTE). We view these sets of digital twins as allowing one to predict a range of behaviour for
an individual.

There exists a vast literature on the development of predictive models for blood glucose response.
For example, a recent paper [12] surveys 140 articles related to personalised blood glucose
prediction strategies. Many of these strategies have been developed to aid the design of a, so-
called, “artificial pancreas.” The goal of an artificial pancreas is to automate the delivery of
insulin in response to measured variables, in particular the measured blood glucose response.
The models used for this purpose are usually “control-oriented” models with a small number of
adjustable parameters. Examples of models utilised for the design of artificial pancreas strategies
are described in [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

A related research area focuses on models that describe the behaviour of a physiologically sim-
ilar cohort of individuals. These models are typically more complex and are useful to simulate
groups of persons with diabetes using, so-called, “in-silico” trials. A well-known example of a
model of this type is the UVA-Padova simulator [26, 27, 28]. Other models that have been used
for in-silico trials were presented in [29, 30, 31, 32, 33, 12].

It is acknowledged in the research referred to above that real models for individuals with diabetes
exhibit a high degree of uncertainty. This uncertainty is taken into account when evaluating dif-
ferent strategies. However, this is after the control strategy has been specified. We propose here a
different approach in which the model uncertainty is explicitly accounted for at the design stage.
Indeed, of importance in the description of the MDTE for an individual is that the formalism
emphasises that a multitude of output events are typically observed for an individual in clinical
practice under seemingly similar conditions. To address this problem, we provide a statistical
description of an envelope of possible behaviours. This is in the spirit of work on stochastic
embedding described in [34, 35, 36]. The availability of this statistical description allows one
to answer more sophisticated questions than could be answered using deterministic models. For
example, given the MDTE for an individual one can ask, “what is the best management policy
for a particular meal subject to the constraint that the probability of experiencing a hypogly-
caemic event is less than, say, 15%?” Such questions are impossible without the availability of
a statistical description of the associated uncertainty.

Our work is aimed broadly at personalised diabetes management. This includes, but is not
limited to, the development of closed-loop strategies. Recent examples of target management
strategies by our medical team include [37] and [38], where different open-loop insulin dosing
strategies are investigated for specific types of meals. One of the goals of the current paper is to
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complement and give insights into the results of these clinical trials. In parallel work described
in [39], a personalised open-loop technique to optimise insulin bolusing for meals having high
fat and protein content was presented. The model used in [39], however, does not account for
disturbances and uncertainties and hence does not allow for the design of insulin strategies that
account for probabilistic outcomes, as we propose here.

Other works that have proposed models of the general type presented here are [31, 27, 40].
These works use Bayesian inference and Monte Carlo techniques to derive posterior distribu-
tions of model parameters given data collected for a particular individual. The procedure yields
models that have been referred to as virtual ‘clones’ [27] or ‘stochastic virtual subjects’ [31]. In
[27] the background model is the model behind the UVA-Padova simulator, whereas the model
used in [31] is the Willinska-Hovorka model [29]. In that regard they offer valuable improved
versions of the virtual populations coded in their respective simulators. An important difference
with the work reported here is that [31, 27] base their results on plasma glucose and plasma
insulin measurements. By way of contrast, the proposed MDTE used here is derived from in-
terstitial blood glucose sensor data and insulin pump information. Hence the models can be
estimated from minimally invasive free-living tests and used to directly compute insulin dosages
for use with pumps or injections. Also, the proposed envelopes are based on simple linear
models and uncertainty descriptions and have a minimal number of adjustable parameters. A
model with similar characteristics was proposed in [41], and was used to identify individualised
models to data collected under free-living conditions. The model has an error component that
is modelled as filtered white noise. The individualised model was shown to predict hypogly-
caemic events more accurately than a single average model for the whole population. Stochastic
models of limited complexity, such as our proposed MDTE framework and the individualised
model of [41], are well suited to the design of optimal management algorithms that specifically
consider uncertainty in the formulation. In this regard, a key contribution of the current pa-
per is a methodology to design optimal probabilistic open-loop insulin dosing strategies. The
methodology incorporates a mechanism to adjust the probability that the predicted BGL will
violate a ‘safety’ constraint imposed on hypoglycaemic events. The strategy can thus be used
to investigate optimal tradeoffs between performance and robustness of policies for a particular
individual.

In summary there are two main contributions in the paper. The first contribution is a systematic
procedure for fitting an envelope of models which captures a range of possible BGL responses
for a particular individual having Type 1 diabetes. This contribution is explained in detail in
Sections 3 to 5. The second contribution is a methodology that employs convex optimisation
to develop an insulin injection policy which minimises mean square peak BGL whilst ensuring
that there is a strict lower bound on the probability of hypoglycaemic events. This contribution
is explained in detail in Sections 6 to 10.

2. Phases of the Procedure

The main steps involved in developing and using an MDTE for an individual are shown schemat-
ically in Figure 1. The procedure shown in the figure is organised into 6 phases which are briefly
described below. (More details are presented in subsequent sections of the paper.)

Phase 1 (Individualisation): The process begins with a specific individual.
Phase 2 (Trial design and data collection): A suitable set of clinical trials is planned based on
minimal disruption to the individual. Data is collected from trials conducted at home by the
individual.
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Figure 1: The main stages of fitting and utilising a MDTE.

Phase 3 (Estimation): A “central” Metabolic Digital Twin (Meditwin) is estimated for the in-
dividual.
Phase 4 (Envelope quantification and validation): The impact of disturbances is quantified
and added to the model. The envelope responses are then compared with multiple data records.
Phase 5 (Optimise strategies): Designs of “optimal” management strategies are performed for
the individual using the MDTE leading to suggested improved management strategies.
Phase 6 (Validate strategies): The suggested designs are tested and validated on the real indi-
vidual.

This paper reports results of clinical trials on 12 individuals. Phase 6 was restricted to 2 of the
original individuals.

3. Individualisation, Trial Design and Data Collection

This section describes phases 1 and 2 shown in Figure 1.

3.1. Individualisation

One or more individuals are chosen for which it is desired to build a personalised MDTE and to
formulate a diabetes management strategy.

3.2. Trial Design

Data is collected at home by the individual. To maximise the value of data, planned experiments
are used to focus on the behaviour of interest [42]. The testing needs to be minimally intrusive
to the individual yet reveal as much information as possible. It is thus important that the tests
span the behaviour of interest and allow the impact of different inputs to be separated. For
example, to identify the response to a single meal and insulin, one needs at least two tests with
different meal size or insulin magnitude. Alternatively, if one wishes to separate the impact of 3
meal macronutrients (e.g., carbohydrates, fat, protein), two types of exercise (aerobic, anaerobic)
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and insulin, then 6 separate tests would be needed having different meal composition, exercise
patterns and insulin profiles.

Caution is needed in carefully selecting the pattern of tests. One reason for this is that the human
body is a complex mechanism. This means that a single model that describes all possible scenar-
ios would need to be very complex. Indeed, it might reasonably be argued that such models are
unrealistic. Even if one were optimistic about the existence of such a “universal” model then the
model would contain a large number of adjustable parameters making it extremely difficult to fit
to an individual. On the other hand, restricted complexity models will contain “bias errors”.

“Bias” errors [42, 43, 44, 45, 46, 47] are particularly problematic since they are operating con-
dition dependent. However, the impact of such errors can be mitigated by ensuring that the
conditions under which models are fitted are similar to the conditions under which the model
will be ultimately used.

In the case of the MDTEs, tests comprising a single meal consumed over a short period of
time combined with a dual wave insulin pattern comprising an initial pulse of insulin (bolus)
followed by a constant flow over an extended period (extended bolus) will be used. This choices
is motivated by two facts:

1. Meals are typically consumed over relatively short periods of time, and

2. clinical experience suggests that a good insulin strategy for most meal types comprises
either a single bolus or a single bolus followed by some other extended insulin pattern.

Remark 3.1. Note that “bias error” distribution is not usually addressed in the statistics liter-
ature which, almost exclusively, assumes that the true system lies in the chosen model set [43].
There does exist some discussion of the question of bias error distribution in recent control
engineering literature—see for example [35, 36, 45, 47].

3.3. Data Collection

Consistent with the discussion in Section 3.2, we use data obtained during a recent medical trial
conducted at home and aimed at evaluating the efficacy of an open-loop ‘dual wave’ insulin
strategy, i.e., the use of a standard bolus followed by an ‘extended bolus’ (square wave), for a
high-fat, high-protein meal. The target meal contained 30 g of carbohydrates (CHO), 40 g of fat
and 50 g of protein. A summary of the trial protocol is as follows: In the two weeks prior to study
commencement participants were contacted every second day to review BGLs and adjust basal
insulin rates and insulin-to-carbohydrate ratio (ICR) reference to meet pre-meal and post-meal
BGL targets of 4 to 8 mmol/L. Test meals were given at breakfast and participants were restricted
from doing strong exercise during the postprandial monitoring period. No restrictions were
placed on exercise the day prior. Participants were asked to fast overnight and were excluded
from the test day if they had an episode of hypoglycaemia (capillary BGL < 3.5 mmol/L or
symptomatic, resulting in food on board) or administered a correction insulin dose after 3 am
(resulting in extra insulin on board). Participants were required to meet a pre-meal blood glucose
target of 4 to 10.9 mmol/L and consume the test meal in 20 minutes. The data was collected by
individuals at home.1 Twelve individuals from this trial were studied, identified as Subjects 1, 2,
4, 5, 6, 7, 9, 10, 11, 12, 13 and 16. (The missing numbers, i.e., 3 and 8 correspond to individuals
for whom the trials had to be aborted due to equipment malfunction, sickness, etc.) Four tests

1This research was approved by the Hunter New England Human Research Ethics Committee, reference number
16/12/14/4.01 of the Hunter New England Local Health District.
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were carried out on each individual (with a small difference2 in the case of Subject 2). These
tests were performed on separate days for each individual. Each test comprised a dual wave
with a 60:40 split of the insulin dose between the standard bolus and the extended bolus. Insulin
delivery was commenced 15 min before food ingestion. The extended bolus was applied over
180 minutes following the standard bolus. Each test utilised a different quantity of insulin as a
function of the individual’s ICR. The quantities used in the tests were:

Test 1: the amount suggested by the person’s ICR for the particular meal’s CHO content (the
’ICR dose’),
Test 2: 20% more than the ICR dose,
Test 3: 40% more than the ICR dose and
Test 4: 60% more than the ICR dose.

The data for 47 trials (4 tests on 11 individuals and 3 tests on Subject 2) is shown in Figure 2.
Time zero in this figure corresponds to the time meal ingestion was commenced. The time of
application of the bolus is 15 min earlier.

We note that the BGL unit used in this paper is mmol/L and the insulin unit is a value, V, relative
to the individual’s ICR. (For example, 0.7V is 70% of the individual’s ICR dose multiplied by
the CHO content of the meal.)

4. MDTE Estimation

Here we describe phases 3 and 4 of the procedure shown in Figure 1.

We chose a simple linear model having a small number of parameters to balance the requirement
of excessive testing to fit many parameters in a complex model versus inconvenience to the
individual. We note that other works, e.g., [32, 33], have also adopted linear models. In this
context, we stress the point that using a more complex model is not guaranteed to yield better
predictability on new data due to the potential for over-fitting when a small amount of data is
used to fit the model and when many adjustable parameters are contained in the model [42]. The
simple model was chosen as a trade-off between good predictability and the number of paramers
to fit with limited data.

The following Subsections 4.1 to 4.3 describe the steps for creating a “Central” Meditwin for a
particular individual. Subsection 4.5 explains how this is extended to a set of models as used in
the MDTE.

4.1. Pulse Response Fitting

In the sequel we subtract the entry BGL and basal insulin flow so that we deal with deviations
around steady state.

We denote the measured BGL data for each test (as a deviation from the entry value) by

Y µ .
= (yµ1 , . . . , y

µ
N ), µ ∈ {1, 1.2, 1.4, 1.6}. (1)

2 The 100% test was not performed on Subject 2, but enough data was collected through the other tests to allow
for model fitting.
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Figure 2: Raw data for all subjects. BGL excursions are relative to the initial value at the start of the test.

In (1), N is the number of samples and the values of µ correspond to the insulin doses used
in Test 1 to Test 4 described in Section 3.3. In the linear modelling framework, superposition
applies. Thus the BGL deviations can be modelled as

Y µ = RF + µRI , (2)

where RF is the BGL response to the given meal (represented as a pulse) and RI is the BGL
response to the ICR dose administered as the dual-wave input described in Section 3.3. Since we
are interested in investigating alternative insulin patterns beyond the dual wave scheme tested in
the trials, it is useful to extract the response to a single insulin bolus, i.e., a pulse of insulin. This
is done by deconvolving the insulin response, as explained below.

LetRI
.
= (rI1, . . . , r

I
N ) be the response to a dual wave comprising a pulse of size α (the standard

bolus) applied at time t = 0 and a step of size β (the extended bolus) applied from sample 0 to
M − 1. Denote the unit pulse response by HI

.
= (hI1, . . . , h

I
N ).
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By superposition, we have that the response RI is given by

rI1
rI2
rI3
...
rIM
rIM+1

...
rIN


=



α+β
β α+β
β β α+β

...
...

. . . . . .
β β ... β α+β
0 β ... ... β α+β

...
. . . . . . . . . . . . . . . . . .

0 ... 0 β ... ... β α+β


︸ ︷︷ ︸

ΦI



hI1
hI2
hI3
...
hIM
hIM+1

...
hIN


,

where ΦI is a lower-triangular matrix. The above equation can be expressed succinctly as RI =
ΦIHI . Combining this with (2) yields

Y µ = RF + µΦIHI . (3)

The data from the trials for each individual will be considered “biologically consistent” if the
areas under the positive BGL excursions (i.e., effectively a quantity proportional to the sum
of all positive BGL excursions) are ‘ordered’ so that larger areas correspond to lower amounts
of insulin injected. Only biologically consistent data will be used to estimate the MDTE. To
describe the deconvolution step, suppose that for a given individual all data is biologically con-
sistent so that all 4 tests can be used for model estimation. As outlined in Section 3.3, our tests
corresponded to µ1 = 1, µ2 = 1.2, µ3 = 1.4 and µ4 = 1.6. The following set of equations then
apply: 

Y µ1

Y µ2

Y µ3

Y µ4

 =


IN µ1ΦI

IN µ2ΦI

IN µ3ΦI

IN µ4ΦI


︸ ︷︷ ︸

Γ

[
RF
HI

]
(4)

(IN is theN×N identity matrix.) The food and insulin pulse responses can be obtained from (4)
by multiplying both sides from the left by the pseudoinverse of the matrix Γ as long as there are
at least 2 tests that yield consistent data.

To illustrate, we will use Subject 1 from the previously described trial.3 For this individual all
collected data is biologically consistent so the 4 tests were used to estimate the responses. The
food and insulin to BGL pulse responses, RF and HI , extracted from (4) are shown by blue
solid lines in Figure 3.

4.2. Transfer Function Fitting for the Central Meditwin

The next step is to fit transfer function models. Transfer function models represent a dynamic
system’s frequency response, and have an equivalent representation as a set of differential equa-
tions [48]. The latter are commonly used to describe BGL responses, see e.g., the models sur-
veyed in [12].

We fit a 3-real-pole transfer function model to the food and insulin pulse responses, denoted by
GF and GI , respectively. The food model contains 4 parameters i.e., the gain and the location

3The results for other individuals are presented in Section 4.3.
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Figure 3: Extracted food and insulin pulse responses and fitted transfer function model responses for the Central
Meditwin for Subject 1.

of the 3 real poles:

GF (s) =
KF

(a1s+ 1)(a2s+ 1)(a3s+ 1)

.
= GF (θF ), (5)

where s is the Laplace transform variable, and the parameter vector is θF
.
= (KF , a1, a2, a3),

where KF [(mmol/L)/(g/min)] is the gain and a1, a2 and a3 [min] are the time constants associ-
ated with the food response. The insulin model contains five parameters:

GI(s) =
KI e−sτ

(b1s+ 1)(b2s+ 1)(b3s+ 1)

.
= GI(θI). (6)

The parameter vector is θI
.
= (KI , b1, b2, b3, τ), where KI [(mmol/L)/(V/min)] is the gain, b1,

b2 and b3 [min] are the time constants associated with the insulin response and τ is a pure delay.
The latter is fixed at 15 minutes based on extensive prior clinical experience.

The total BGL response model for the central Meditwin is then

y = GF f +GI u, (7)

where y [mmol/L] denotes BGL, and u [V/min], f [g/min] are the insulin and food inputs,
respectively.

Each transfer function in (5) and (6) was fitted separately using the extracted responses RF and
HI shown in Figure 3. The following fitting cost function was employed (illustrated here for the
fitting of HI

.
= (hI1, . . . , h

I
N )):

θ∗I = arg min
θI

{ N∑
i=1

[hIi − ĥi(GI(θI))]2 + 50(hmax − ĥmax)2 + (tmax − t̂max)2
}
, (8)

where ĥi(GI(θI)) is the pulse response of the insulin to BGL transfer function (6), (t̂max, ĥmax)
are the peak time and peak value of this response and (tmax, hmax) are the peak time and peak
value of the response HI extracted from the data. The weights 50 and 1 in the last two terms
were found by trial and error. The motivation behind the above choice of cost function is that,
from clinical experience, the peak response time and value are key characteristics in determining
the resulting BGL response and obtaining a realistic insulin management strategy. The optimi-
sation (8) was performed using Matlab’s ‘fmincon’ function initialised from different starting
points to circumvent local minimum difficulties.
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The pulse responses of the food and insulin to BGL transfer functions of the Central Meditwin
for Subject 1, fitted as described above, are shown by the solid-‘plus’ red lines in Figure 3. The
Central Meditwin so obtained was next used to predict the responses for each of the tests of the
trial. These predictions are shown in Figure 4 for Subject 1 together with the original data.
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Figure 4: Raw data and Central Meditwin predictions for Subject 1.

4.3. Central Meditwin Fitting for the Full Set of Individuals

The Central Meditwin fitting procedure described in the previous subsections for Subject 1 was
repeated for all remaining individuals in the trial using the biologically consistent data sets for
those individuals. The results are reported in Appendix A. For each individual, the 2 plots on
the left show the estimated food response (upper plot) and the estimated insulin response (lower
plot). The responses obtained by the procedure explained in Section 4.1 are shown by solid blue
lines. The responses of the transfer function models, fitted as explained in Section 4.2, are shown
by solid-’plus’ red lines. The 4 subplots on the right of the figures show the predicted responses
to the dual-wave inputs used in the trials, together with the raw data collected during the trials.

We observe that some of the extracted responses have large sharp variations. These variations
are difficult to explain given the trial conditions where the only recorded ‘external’ inputs over
the trial duration were a food pulse and an insulin dual wave at the start of the test. Thus there
are clearly other factors (e.g., other disturbances, sensor or actuation malfunction) affecting the
data for those individuals. The disturbance model presented in Section 4.4 and the construction
of the MDTE as explained in Section 4.5 are intended to encompass some of these errors.

4.4. Disturbance model

In determining an appropriate disturbance model, it is relevant to examine possible sources of
error. These include, but are not limited to:

(i) sensor noise and drift,
(ii) actuator (insulin pump) not delivering exactly what is requested,

(iii) intra-individual variability4 (on a daily basis) in food and insulin responses.

Points (i) and (ii) are evolving as technology improves [49, 50].

We fit the disturbance model to the collected data. We make the simplifying assumption that,
although food and insulin models need to be personalised, the disturbance response is the same,

4Note that inter-individual variability is not relevant here since the modelling is directed at each individual.
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or at least similar, for all individuals. We hypothesise that superposition applies and include in
(7) the disturbance induced errors, e, in additive form as follows:

y = GF f +GI u+ e. (9)

Given the Central Meditwin estimates ĜiF and ĜiI of each transfer function GiF and GiI (where
the index i ∈ {1, . . . , Ni} denotes each individual and Ni is the number of individuals in the
trial) and the collected data {yi,jk }, for k = 1, . . . , N , i = 1, . . . , Ni, j = 1, . . . , NT (where
NT = 4 is the number of tests), a total of NiNT realisations of the time series {ei,jk } are avail-
able. An estimate of these time series is obtained by subtracting the response to the central
model, i.e.,

êi,jk = yi,jk − Ĝ
i
F fk + ĜiIu

j
k. (10)

The estimates {ei,jk } are shown in Figure 5. To remove the effect of the initial conditions and to
have sequences of equal length (matching the shortest data sequence), the interval k ∈ [10, 54],
corresponding to time between 50 and 270 minutes, was used to fit the disturbance model.

We chose to model ek as the output of a second-order filter, Te(z), driven by zero-mean, unity
variance, white noise, νk. Error models of this type have been used elsewhere in the literature
[51, 52, 53] to describe sensor errors. Here our goal is to capture these errors plus errors due
to other sources including stress, mild exercise, daily model parameter variability, etc. This
disturbance model amounts to ‘low-pass’ filtered white noise. It is a discrete-time counterpart
of the diffusion process generated by a continuous-time representation of disturbances.

To find the filter parameters, the averaged periodogram of the estimates (10) was fitted to the
averaged periodogram of the outputs of the filter driven by NiNT realisations of the noise νk.
The data and fitted averaged periodograms are shown in Figure 6. This method resulted in the
discrete-time transfer function Te(z) in the model ek = Te(z) νk given by

Te(z) =
2
√

0.02

(z/0.8− 1)2
. (11)

The variance of the resulting output noise ek is approximately 1.15, resulting in a standard
deviation of approximately 1.07 mmol/L.
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Figure 5: Estimates of the disturbance time series obtained using (10).

4.5. Envelope Quantification

The Central Meditwin fitting procedure described in Section 4 delivered a single model for each
individual. However, this model is too optimistic to be useful in practice. We thus propose to
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Figure 6: Disturbance time series fitting.

quantify the impact of possible realisations of ek on the system identification procedure. This
leads to an envelope of models around the Central Meditwin. This envelope captures the impact
of uncertainty in the model parameters. We proceed by producing pL realisations of the process
ek via simulation, where p is the number of tests whose data is used to fit the food and insulin
models. Adding the resulting vectors Ej` , ` = 1, . . . , L, j = 1, . . . , p to the measured time
responses Y µj (of the form (1)) used to fit the model, the procedure described in Sections 4.1
and 4.2 can be repeated L times to generate L distinct estimates of the joint parameter vectors
(θ̂`F , θ̂

`
I), ` = 1, . . . , L.

Remark 4.1.

1. The model estimation was performed using Matlab’s ‘fmincon’ optimisation function. The
original ‘central’ estimates, (θ̂0

F , θ̂
0
I ), obtained in Sections 4.1 and 4.2 were used as the

initial guess for the optimisation.

2. The cost function used for the MDTE fitting is of a similar form to (8) but the two last
terms were replaced by a ‘regularisation’ term [45] penalising large departures from the
Central Meditwin parameters, i.e., via the 2-norm of (θ̂`F − θ̂0

F , θ̂
`
I − θ̂0

I ).

3. The estimates (θ̂`F , θ̂
`
I) are correlated5 and hence the parameter estimates for the food and

insulin models must be considered as a pair for ` = 1, . . . , L.

To illustrate the above procedure, we show in Figure 7 the estimates obtained for the gains KF

and KI for L = 1000.

Note that the gains on food and insulin have opposite signs but are positively correlated in
magnitude, i.e., an increase in the magnitude of one gain typically corresponds to an increase in
the magnitude of the other. Hence, if the two models are used to evaluate an insulin dose that
compensates food, then the increased gain magnitudes on both will tend to cancel each other.

The uncertainty envelope for the model parameters is next embedded in the model via a descrip-
tion of the form:

ys = ysF + ysI , ysF = GF (θsF ) f, ysI = GI(θsI)u, θs
.
= (θsF , θ

s
I) ∈ E , (12)

where GF (θsF ), GI(θsI) are transfer functions of the form (5), (6). The delay is not considered

5This correlation is natural since reduced insulin sensitivity is correlated with increased sensitivity to food.
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Figure 7: Estimates for the gains KF and KI .

in (6) since all designs will assume that insulin administration starts 15 min prior to food con-
sumption, as was done in the clinical trials. In (12), f is the food input, u is the insulin input and
θs is a stochastic parameter vector with support in E ⊂ R8 and probability measure Pθ. Since
Pθ is unknown, when testing different insulin administering strategies, a probabilistic analysis
of BGL predictions will be performed by utilising a large number of parameter samples (or
scenarios) obtained as described above.

5. MDTE Validation

To validate the MDTE we compare all the collected raw data with the MDTE predictions in
response to the dual-wave inputs used in the trials. To do this, we add to the responses ŷ given
by (12) a set of independent realisations, es(t), of the process e(t). This yields a set of possible
predicted responses of the form

ys = GF (θsF ) f + GI(θsI)u+ es. (13)

As an illustration, Figure 8 shows the resulting MDTE predictions based on an envelope com-
prising L = 100 model estimates for Subject 1. The blue shaded areas are the ±1.5 standard-
deviation (SD) envelopes around the MDTE mean prediction (plotted in red). The results for the
remaining individuals are shown in Appendix B.

It can be seen that for Subject 1 the envelopes do indeed capture (within ±1.5 SD bounds)
the responses obtained in all the tests. For all individuals, the ±1.5 SD envelopes around the
MDTE mean predictions are within the order of±2 mmol/L. The criteria to consider the MDTE
predictions reliable for an individual are: (i) the data is “biologically consistent” as explained in
Section 4.1; and (ii) the measured BGL traces of all tests including those not used in the fitting
step are within the ±1.5 SD envelope of the MDTE mean predictions for the relevant curve’s
conditions for at least 70% of the time.

6. Stochastic Optimisation Using the MDTE

Here we describe phase 5 of the procedure shown in Figure 1.
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Figure 8: MDTE validation for Subject 1. The blue shaded areas are the ±1.5 standard-deviation envelopes around
the MDTE mean prediction (plotted in red).

6.1. Overview

This section describes one of the key results of the paper, namely how we use the digital twin
envelopes in a systematic stochastic design procedure which trades off peak BGL minimisation
and predicted probability of hypoglycaemic events based on the uncertainty inherent in θs and es.

As an illustration of the power of utilising MDTEs to complement the clinical trials on real
individuals with T1DM, we ask the following questions for the given meal:

(i) What is the best dual wave strategy when the duration of the extended bolus can be chosen?
(ii) What is the best dual bolus (or ‘split bolus’) strategy?

(iii) What is the best dual wave strategy when the duration of the extended bolus is set to 180
minutes?

(iv) What is the best single bolus strategy?

In all cases, we specifically account for model uncertainty in the design.

To find the best strategy in cases (i) to (iv), we refer to equation (12) and consider L model
realisations corresponding to parameter estimates (θ`F , θ

`
I)
s, ` = 1, . . . , L. For each of these

realisations we consider a discrete-time model equivalent via equation (12). We let GdF (θ̂`F ) and
GdI (θ̂`I) be zero-order hold discretisations, with a chosen sampling period Ts, of the continuous-
time transfer functions in (12). The sample instants obtained from the sampling period Ts are
denoted by k = 0, 1, . . . . Unless otherwise stated, the sampling period is taken as Ts = 10 min.

We then seek an ‘optimal’ insulin input u(k) = u∗(k) using the following relaxed optimisation:

u∗(·) = arg min
u(·)

{
J
.
=

L∑
`=1

N∑
k=1

ŷ2
` (k) | ŷ`(k) = GdF (θ̂`F )f(k) + GdI (θ̂`I)u(k), ŷ`(0) = 0,

u(k) of desired form, ŷ`(k) ≥ y#,∀k ≥ 0, f(k) = Fδ(k), F > 0
}
. (14)

F in (14) is the amount of CHO in the meal and δ(k) denotes a unit-area pulse. In the sequel
we take F = 1, since the amount of CHO ingested was implicitly identified as part of the food
transfer function gains. A very important aspect of the cost function (14) is that the constraint
parameter y# is not the target minimum BGL. Instead, it represents a constraint relaxation
parameter used in the design to control the probability of occurrence of hypoglycaemic events.
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The ‘desired form’ for the insulin input u varies in each of the above cases, namely dual wave,
split bolus, dual wave with fixed duration and single bolus. We take the number of samples as
N = 36, that is an optimisation horizon of N Ts =360 min.

6.2. Choice of Constraint Relaxation Parameter

A key element of our proposed design strategy is the use of the relaxation parameter y#. We
use this parameter as a mechanism to ‘convexify’ the problem of trading off average peak BGL
reduction and the probability of violation of the constraint y(k) ≥ ymin. We note that there
are two sources of error in our predictive model, namely (i) uncertainty in the model parameters
resulting from different values of e(t) experienced during data collection and (ii) uncertainty in
the values of e(t) that are encountered when the model is used. To simplify the explanation, say
that the range of possible e(t) is bounded in the interval [−a, a], for some positive number a.
Our design ensures that no possible value of θ̂ can result in a response such that mint ŷ(t) ≤ y#.
Figure 9 shows possible values of mint ŷ(t) and ê(t∗) where t∗ .

= arg mint ŷ(t). We note that
some values of ê(t∗) play a beneficial role whilst others have a negative impact.

Figure 9: Illustration of the use of y# to adjust the probability of violation of the hypoglycaemic constraint.

The responses to the left of y# in Figure 9 are ruled out by the design of the insulin input us-
ing the relaxed cost function. On the other hand, any combination of mint ŷ(t) and ê(t∗) lying
in the shaded area will result in mint y(t) < ymin, where y is as in (13), i.e., violation of the
hypoglycaemic constraint. It is clear from Figure 9 that when y# is increased then the proba-
bility of constraint violation decreases since the set of offending values of mint ŷ(t) and ê(t∗)
is a strict subset of the previous values. Conversely, if y# is decreased then the probability of
constraint violation necessarily increases. In addition, as y# is increased the cost function value
is non-decreasing, and vice versa. Hence the use of y# allows one to convexify the problem of
achieving a trade-off between the average peak BGL response (as measured by the cost function)
and robustness (as measured by the probability of constraint violation).

We have extensively tested the above idea for Subject 1. For example,6 using y# = −5 mmol/L
and ymin = −3 mmol/L for the optimal dual wave design gives a 5% chance of constraint
violation due to uncertainty in the model parameters alone and 18% chance of constraint viola-
tion due to the combined uncertainty in both the model parameters and the future error process
realisation.

6Note that ymin is the desired constraint whereas y# < ymin is the constraint relaxation parameter.
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In the sequel, we will exclusively use parameter uncertainty but note that if uncertainty in the
future error process were to be also considered then this would increase the probability of con-
straint violation by about 10%. As discussed above, both probabilities can be adjusted via the
constraint relaxation parameter y#. This tradeoff is further examined in Section 8.1.

Remark 6.1. We recall that here we deal only with deviations from the entry BGL. Thus ymin
is actually a (negative) deviation from the entry BGL. To illustrate the ideas we will initially
assume an entry BGL of 7 mmol/L. Later in Section 8.2 we will explore the impact of different
entry BGL values on the design strategy.

7. The Optimised Insulin Policies

Tha availability of the MDTE for an individual allows us to examine and optimise many different
strategies without needing to further bother the individual.

We first illustrate the above ideas for Subject 1. We then repeat for the remaining individuals.

7.1. Best Dual Wave Strategy

We perform the optimisation (14), where the form of the input is constrained to be a bolus
(whose size is to be determined) followed by an extended bolus (square wave) whose amplitude
and duration are also to be found by the optimisation. The envelope size is taken initially as
L = 100 and the results will then be compared with those using more models in the envelope.

We observe that, for each fixed duration of the square wave, say w samples, the problem (14) is
a quadratic programme in the decision variables u(0), . . . , u(N − 1), where u(0) represents the
size of the initial bolus, and u(1) = · · · = u(w), u(w + 1) = · · · = u(N − 1) = 0 represent
the additional input constraints required to yield the desired square wave. Since quadratic pro-
grammes are convex and computationally efficient, we will solve problem (14) for each duration
w in the integer interval [6, 18], which for the sampling period Ts = 10 min correspond to actual
extended bolus durations of 60 min, 70 min, etc. up to 180 min. Each value of w yields a cost
J = J(w) resulting from the optimisation (14). The optimal duration, w∗, is then the one that
yields the smallest cost, that is w∗ = arg minw J(w).

Proceeding as described above we obtain the following results:
– Optimal duration: w∗ = 11, i.e., 110 min.
– Total insulin: 1.7V.
– Split: 39:61.
– Max predicted mean BGL deviation: 1.5 mmol/L.
– Probability mint ŷ(t) < ymin of 5%.

The predicted BGL excursions, ŷ(t), resulting from the best dual wave strategy for the MDTE
associated with Subject 1 are shown in the first subplot of Figure 10. The mean response is
shown by the solid red line, the ±1.5 standard deviation bounds are shown by blue lines, and all
L = 100 MDTE responses are shown by dashed lines.

Comparing with the results obtained in the clinical trial, the above values suggest that the du-
ration of 180 min used in the testing phase for the extended bolus is longer than is optimal for
Subject 1.7 Indeed, the optimal dual wave responses for this individual, as seen in the first sub-

7The clinical members of our team have taken note of this discrepancy and are hence currently testing dual wave
policies having reduced time for the extended bolus.
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Figure 10: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 1.

plot of Figure 10, achieve peak BGL values similar to those obtained for the +60% test (cf. the
fourth subplot of Figure 8) but applying slightly more insulin, i.e., 70% more than the standard
bolus for this individual over the shorter duration of 110 min.

The optimisation was repeated for different envelope sizes. The resulting optimal mean re-
sponses are shown in Figure 11 for L ∈ {100, 200, 300, 400}. We can see that the results are
consistent for all sizes, with a slightly larger peak for L ≥ 200. Hence, unless otherwise stated,
we will henceforth consider L = 100.
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Figure 11: Effect of different envelope sizes. L: number of different model realisations included in the MDTE.

7.2. Best Split Bolus Strategy

We perform the optimisation (14), where the input is now constrained to consist of an initial
bolus of size to be determined and a second bolus whose size and application time are also to
be found by the optimisation. The application time is considered with respect to the application
of the first bolus, which is 15 min before food consumption. Here again we observe that for
fixed application time, w, of the second bolus, the problem (14) is a quadratic programme in
the decision variables u(0), . . . , u(N − 1), where u(0), u(w) represent the bolus sizes to be
found, and all other input values are constrained to be zero. As for the dual-wave case, we solve
problem (14) for a range of values w for the application time of the second bolus. Each value of
w yields a cost J = J(w) resulting from the optimisation (14). The optimal application time of
the second bolus, w∗, is then the one that yields the smallest cost, that is w∗ = arg minw J(w).

The predicted BGL excursions, ŷ(t), resulting from the best split bolus strategy for the MDTE
associated with Subject 1 are shown in the second subplot of Figure 10.

The corresponding results are:
– Second bolus application time: 60 min.
– Total insulin: 1.65V.
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– Split: 41:59.
– Max predicted mean BGL deviation: 3.22 mmol/L.
– Probability mint ŷ(t) < ymin of 5%.

7.3. Best Dual Wave Strategy Having Fixed Duration

Here we perform the optimisation as described in Section 7.1, but we fix the duration of the ex-
tended bolus to be 180 min, i.e., the square wave is applied over w = 18 samples. This duration
corresponds to that used in the clinical trial described above. The predicted BGL responses for
the best dual wave strategy of duration 180 min for the MDTE associated with Subject 1 are
shown in the third subplot of Figure 10.

The corresponding results are:
– Total insulin: 1.76V.
– Split: 41:59.
– Max predicted mean BGL deviation: 4.16 mmol/L.
– Probability mint ŷ(t) < ymin of 34%.

Comparing with the results obtained in the clinical trial, the above values are similar to those
obtained for the +60% test, cf. the fourth subplot of Figure 8. Here, however, the recommen-
dation is to apply approximately 15% more insulin than the latter test, and reverse the split to
40:60 instead of 60:40 as used in the trial.

Note that the probability of constraint violation is very high, 34%. Any attempt to reduce this
value by increasing y# (cf. Section 6.2) changed the nature of the optimal solution leading to
the standard (single) bolus strategy.

7.4. Best Standard Bolus Strategy

Here we design a ‘standard’ bolus strategy consisting of a single bolus applied 15 min prior to
food ingestion. The best strategy provides the size of the bolus for which the optimal input (14)
yields the minimum cost. The predicted BGL responses for the best standard bolus strategy for
the MDTE associated with Subject 1 are shown in the last subplot of Figure 10.

The corresponding results are:
– Total insulin: 0.8V.
– Max predicted BGL deviation: 12.25 mmol/L.
– Probability mint ŷ(t) < ymin of 5%.

From the above values and the traces in the last subplot of Figure 10 (note the different vertical
axis scale in this subplot), it is clear that a (single) standard bolus gives an inferior result for this
individual (Subject 1) and for the given food.

7.5. Digital Trials for All Individuals

The optimisation procedures reported above were repeated for the MDTEs associated with all
individuals. The numerical results are summarised in Table 1. The MDTE BGL predictions,
ŷ(t), resulting from the best dual wave, split bolus, dual wave with fixed duration, and single
bolus strategies are given in Appendix C. All tests were aimed at achieving a probability of
violation of the hypoglycaemic constraint ŷ(t) ≥ ymin = −3 mmol/L of approximately 5% or
less and assume an entry BGL of 7 mmol/L. For the best standard bolus and Subjects 1, 2, 7
and 13, an additional test was performed where this probability was allowed to be higher (see
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the pink cells under ‘Best Standard Bolus’ in Table 1), to illustrate the performance-robustness
tradeoff discussed in Section 8.1 below.

Table 1: Digital trial results for all 12 individuals. Subject data: # is the subject identification (ID) number in the
trial and ‘Tests’ displays the numbers of the tests whose data were used to fit the models. The other variables are:
w: duration of the extended bolus; tapp: time of application of the second bolus. ‘Peak’ is the peak of the average
response. ‘< ymin’ refers to the percentage of violation of the hypoglycaemic constraint BGL ≥ ymin = −3
mmol/L.

Subject Data Best Dual Wave Best Split Bolus
# Tests Insulin Split w Peak <ymin Insulin Split tapp Peak <ymin

1 (1,2,3,4) 1.7080 39:61 110 1.4649 5% 1.6502 41:59 60 3.2249 5%
2 (2,3,4) 1.5212 51:49 110 1.3197 5% 1.4038 52:48 50 2.7382 4%
4 (1,2,3,4) 2.0181 57:43 170 1.7178 5% 1.9050 66:34 100 2.3938 5%
5 (1,2,4) 1.5009 63:37 120 0.5860 0% 1.4803 70:30 70 0.8588 2%
6 (1 2,4) 1.3524 86:14 110 0.1739 0% 1.3502 89:11 70 0.1615 0%
7 (2,3,4) 1.2782 55:45 80 0.8401 4% 1.2553 55:45 40 1.1514 5%
9 (1,2,3,4) 1.4844 54:46 190 0.3464 4% 1.4449 64:36 110 0.6253 4%

10 (1,2,3,4) 3.3515 4:96 350 0.9062 5% 1.7970 37:63 150 4.6320 5%
11 (1,2,4) 1.2318 100:0 0 2.8128 5% 1.2318 100:0 0 2.8128 5%
12 (1,2,3,4) 1.7613 89:11 350 0.6685 5% 6.9726 22:78 350 0.8188 5%
13 (2,3,4) 1.3766 51:49 160 1.4514 5% 1.3006 63:37 100 2.4906 5%
16 (2,3,4) 1.3783 29:71 90 2.2675 5% 1.3720 43:57 60 2.5798 5%

Subject Data Best Dual Wave w = 180 Best Standard Bolus
# Tests Insulin Split Peak <ymin Insulin Peak <ymin

1 (1,2,3,4) 1.7610 41:59 4.1602 34% 0.8067 1.1187 12.2485 8.8866 5% 36%
2 (2,3,4) 1.5027 49:51 4.4145 5% 0.9751 1.1417 8.2008 6.7485 5% 48%
4 (1,2,3,4) 2.0678 56:44 1.7200 5% 1.2939 4.7452 5%
5 (1,2,4) 1.5494 69:31 0.8133 3% 1.1301 3.100 5%
6 (1 2,4) 1.3672 89:11 0.2369 0% 1.3213 0.3730 0%
7 (2,3,4) 1.2955 53:47 3.8876 6% 0.7987 1.1410 6.5635 3.1693 5% 61%
9 (1,2,3,4) 1.4721 53:47 0.3507 4% 1.0794 5.0914 5%

10 (1,2,3,4) 1.7950 8:92 4.9064 5% 0.6881 7.2635 5%
11 (1,2,4) 1.2318 100:0 2.8128 5% 1.2318 2.8128 5%
12 (1,2,3,4) 1.6940 93:7 0.6126 5% 1.5569 0.8181 0%
13 (2,3,4) 1.3934 53:47 1.5756 5% 0.8156 1.1345 5.4574 3.6523 5% 31%
16 (2,3,4) 1.4735 34:76 3.9446 6% 1.0332 6.0744 5%

7.6. Discussion

• Subjects with ID# in a green cell have Central Meditwins and MDTEs that reproduce/contain
the data reasonably well (i.e., they satisfy the validation criteria given in Section 5). Subjects
with ID# in an orange cell have Central Meditwins and MDTEs that fail to reproduce/contain
larger parts of the data. Subjects with ID# in a red cell have Central Meditwins and MDTEs
that fail to reproduce/contain large parts of the data in addition to having highly inconsistent
data (i.e., several of the tests do not respect the ‘area ordering’).

• The yellow cells flag abnormal results. The probability of constraint violation of 34% for
Subject 1 was explained in Section 7.3. The yellow cells in the best split bolus results for
Subject 12 are not realistic since they advocate a large amount of insulin applied at the end
of the optimisation horizon (see also the second subplot in Figure C.39). In fact, the results
in Table 1 and Figure C.39 suggest that the standard bolus achieves the best compromise
between performance (low BGL peak) and robustness for Subject 12.

• All strategies for Subject 11 coincide with the best standard bolus strategy.
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• For Subjects 1, 2, 7 and 13, the insulin amount for the best standard bolus is less than 1,
i.e., less than the individual’s ICR (dark blue cells). Note that in those cases the split in the
other policies tends to be around 50% (or less) for the initial bolus (lighter blue cells for the
same individuals). These results suggest that for those subjects (ID# 1, 2, 7 and 13) and this
particular meal, it may be advisable to be cautious with the amount of insulin applied upfront
to avoid hypoglycaemia.

• For Subjects 1, 2, 7 and 13, the pink cells in the best standard bolus results correspond to a
larger bolus (between 1.12 and 1.14 times the person’s ICR). Note that these amounts naturally
yield lower peak BGL values. However, this comes at the cost of a much larger probability of
violation of the hypoglycaemia constraint (cf. Section 8.1).

8. Design Tradeoffs

Here we examine the inherent design tradeoffs in more detail.

8.1. Tradeoff Between Performance and Robustness

Allowing a larger probability of constraint violation makes a strategy ‘less robust’, in the sense
of increasing the chance of leaving the ‘safe’ BGL zone. On the other hand, it improves the
associated performance by reducing the BGL peaks. This tradeoff is illustrated for Subjects 1
and 4 in Figure 12, where the average maximum BGL excursion achieved by the best standard
bolus strategy (right vertical axis) and the corresponding amount of insulin (left vertical axis)
are plotted against the percentage of violation by ŷ(t) of the hypoglycaemic constraint BGL
≥ ymin = −3 mmol/L (assuming an entry BGL of 7 mmol/L).
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Figure 12: Performance-robustness tradeoff for Subjects 1, 4, and the best standard bolus strategy.

For example, for Subject 1, if one is prepared to accept a prediction that there is a 20% chance
that ŷ will fall below ymin, then an amount of insulin equal to 1 ICR would achieve an av-
erage peak excursion of approximately 10 mmol/L. Note also that, for this individual and this
meal, the results suggest that it is not possible to reduce the average maximum BGL excursion
below (approximately) 5 mmol/L. This can be achieved with (approximately) 1.6 ICR and at
the (clinically unacceptable) cost of a 97% chance of violating the hypoglycaemia constraint.
This reinforces the claim, made in Section 7.4, that other strategies are preferable for Subject 1
and this particular meal. On the other hand, the performance-robustness tradeoff is very dif-
ferent for Subject 4. Indeed, from the right plot of Figure 12 we see that a very low value of
(approximately) 2.2 mmol/L for the average maximum BGL excursion can be achieved with (ap-
proximately) 30% probability of having ŷ < ymin if a single bolus of (approximately) 1.9 ICR is
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applied upfront. In fact, as seen in Section 7.5, for Subject 4 and this particular meal a standard
bolus is likely to yield similar results to those achieved for the other tested strategies where in-
sulin is split between a bolus and some form of extended (or second) bolus. Similar conclusions
are shown for other individuals in Section 7.5.

8.2. Impact of Entry BGL

In the above analysis, we have assumed an entry BGL of 7 mmol/L by way of illustration. We
note that the average entry BGL for all tests and individuals in the trial was 8.8 mmol/L. The
minimum entry BGL was 4.1 mmol/L and the maximum 9.8 mmol/L. For cases where the entry
BGL is larger than 7 mmol/L then one can safely use a more aggressive policy. Similarly, if
the entry BGL is less than 7 mmol/L then one should use a more cautious policy. That is, the
methodology can take into account any entry BGL value by simply redefining the minimum BGL
deviation constraint. Thus, the implicit assumption of equal entry BGL is not a limitation of the
methodology but rather a choice to simplify the above discussion. The final tests reported in
Section 10, where the optimised strategies were tested on a subset of the individuals, necessarily
account for entry BGL.

For a fixed probability (i.e., 5%) of having ŷ < ymin, Figure 13 shows the impact of having a
different entry BGL value for Subjects 1 and 4.
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Figure 13: Impact of entry BGL for Subjects 1, 4, and the best standard bolus strategy.

9. Hypotheses Arising from the MDTE Trials

Two main hypotheses arise from the MDTE trials reported above:

Hypothesis A: For the given meal (high-fat, high-protein) there is a significant advantage to be
obtained from using some form of extended bolus rather than a single bolus.

Hypothesis B: There appears to be no significant difference between dual wave and split bolus
strategies provided they are “tuned” to each individual.

Clinical data is available relating to Hypothesis A above. Specifically, work reported in [38]
confirms that for a high-fat, high-protein meal, a dual-wave strategy consistently outperforms
a single bolus. Hypothesis B is currently being studied in clinical trials by the medical team
associated with the current paper.
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10. Final Evaluation on a Subset of the Individuals

This section relates to phase 6 of the procedure shown in Figure 1.

Obviously the ultimate test of the efficacy of the procedure described here is to return to the
same individuals to test the proposed “optimised” strategies. It would have been desirable to
return to all individuals but this was not achievable due to the passage of time since the original
tests were performed (some individuals had moved away, others were not available for further
participation in clinical trials). However, it was possible to return to two individuals (Subjects 1
and 4) and test the optimised strategies for the same meal utilised in the original tests. Note that
the specific entry BGL now had to be considered in the optimisation. To deal with this issue,
a table computed for different entry BGLs varying between 4.5 to 8.5 mmol/L, at intervals of
0.5 mmol/L, and the associated optimised dual wave strategies was prepared for each individual.
On the day of the test the individual (or their guardian) called the trial coordinator to report
the entry BGL. The coordinator then communicated the corresponding insulin dose, split and
duration.

The validation results for the two subjects are briefly described below.

10.1. Subject 4

The “optimal” policy obtained by the procedure discussed in Sections 7.1 and 8.2 was applied
twice on two successive days. The details are: Day 1 (entry BGL 4.5 mmol/L): Dose: 1.54,
Split: 44:56, Duration: 180 min; Day 2 (entry BGL 5 mmol/L): Dose 1.73, Split 47:53, Duration:
200 min).

The results are shown in Figure 14. The plots correspond to Day 1 on the left and Day 2 on the
right. The data is shown by thick blue lines and the green shaded areas are the ±1.5 standard-
deviation envelopes around the MDTE mean predictions.

Figure 14: Results of validation test on Subject 4.

Note that the measured BGL traces lie substantially within the prediction envelope provided by
the MDTE. Indeed, on Day 1, 65% of the duration of the BGL response lay within the ±1.5
SD envelope and 82% within the total MDTE envelope (not shown in the figures for clarity) and
on Day 2, 74% of the duration of the BGL response lay within the ±1.5 SD envelope and 81%
within the total MDTE envelope. Also, neither test resulted in a hypoglycaemic event (BGL less
than 3.9 mmol/L).
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10.2. Subject 1

The optimal policy obtained by the procedure discussed in Sections 7.1 and 8.2 was again ap-
plied twice. The details are: Day 1 (entry BGL 7.5 mmol/L): Dose 1.71, Split: 43:57, Duration:
110 min; Day 2 (entry BGL 8 mmol/L): Dose: 1.73, Split: 46:54, Duration: 120 min.

The results are shown in Figure 15. The plots correspond to Day 1 on the left and Day 2 on the
right. The data is shown by thick blue lines and the green shaded areas are the ±1.5 standard-
deviation envelopes around the MDTE mean predictions.

Figure 15: Results of validation test on Subject 1.

Note that a hypoglycaemic event did not occur on either day. However, the responses deviate
from the prediction envelope: on Day 1, 24% of the duration of the BGL response lay within
the ±1.5 SD envelope and 54% within the total MDTE envelope (not shown in the figures for
clarity); the results improved on Day 2, for which the BGL response duration was 54% within
the ±1.5 SD envelope and 81% within the total MDTE envelope.

The results suggest that the BGL responses for this individual may have changed over the 2
years between the original trials and the new tests. Hence refitting the models and new MDTE
strategy testing seems desirable for this individual and is planned in the future.

Even though the full trajectories are not well captured by the MDTE predictions, we note that
the responses are consistent in terms of peak values with the original trial results, see the first
plot in Figure 2.

11. Extensions and Embellishments

The work reported in this paper has been based on a single meal comprising high fat and high
protein. The procedure, as described, does not allow the individual impact of fat, protein or
CHO to be separated. Also, other disturbances such as exercise have been excluded. The basic
principle described here can be extended to cover other scenarios. In particular, we have so far
used two (or more) tests for the fixed high-fat, high-protein meal so as to separate the response to
two inputs, namely the given meal and injected insulin. As an extension, say that one wished to
distinguish the response to four inputs (e.g., CHO, fat, protein and insulin). Then four (or more)
tests on each individual would be needed where the amount of each variable of interest were
varied in each test. This represents a modest increase in the testing needed on each individual.
Such testing is planned over the next few years and extra funding to support this extension has
been sought.
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12. Conclusions

This paper has proposed a systematic stochastic optimisation design strategy which explicitly
trades off peak BGL minimisation versus predicted probability of experiencing a hypoglycaemic
event. The design uses a metabolic digital twin envelope (MDTE), which is a probabilistic model
description that takes into account model uncertainty. The MDTE can be fitted using data from
minimally intrusive clinical trials conducted at home. It has been emphasised that the data
collected from the individual needs to contain as many independent tests (with different input
levels) as there are variables of interest, e.g., at least 4 tests are needed to distinguish CHO,
protein, fat and insulin responses. The new strategy has been employed to obtain personalised
optimal insulin policies of different form, i.e., dual wave, split bolus and standard bolus, for
the MDTEs associated with 12 individuals from a recent digital trial performed by the medical
team. Finally, the methodology has been tested by returning to (a subset of) the individuals to
apply the optimised insulin strategies suggested by the MDTE-based stochastic design.
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Appendix A. Central Meditwin Fitting and Predictions for All Individuals

The following figures display the results for the Central Meditwin model fitting and correspond-
ing predictions for all individuals other than Subject 1.
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Figure A.16: Central Meditwin fitting and predictions for Subject 2. Tests having consistent data used for fitting:
(2,3,4). Note that Test 1 @100% was not performed for this subject, which is indicated by a zero line in the corre-
sponding figure.
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Figure A.17: Central Meditwin fitting and predictions for Subject 4. Tests having consistent data used for fitting:
(1,2,3,4).
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Figure A.18: Central Meditwin fitting and predictions for Subject 5. Tests having consistent data used for fitting:
(1,2,4).
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Figure A.19: Central Meditwin fitting and predictions for Subject 6. Tests having consistent data used for fitting:
(1,2,4).
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Figure A.20: Central Meditwin fitting and predictions for Subject 7. Tests having consistent data used for fitting:
(2,3,4).

0 50 100 150 200 250 300 350

Time [min]

-10

0

10

20

B
G

L
 e

x
c
u
rs

io
n

Subject 9 - Central Meditwin Food Response

Extracted response

Transfer function model

0 50 100 150 200 250 300 350

Time [min]

-20

-10

0

10

B
G

L
 e

x
c
u
rs

io
n

Subject 9 - Central Meditwin Insulin Response

Extracted response

Transfer function model

Figure A.21: Central Meditwin fitting and predictions for Subject 9. Tests used for fitting: (1,2,3,4). Note that this
data set is not consistent, however, no better fitting was obtained by trying different subsets of this set.
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Figure A.22: Central Meditwin fitting and predictions for Subject 10. Tests used for fitting: (1,2,3,4). Note that this
data set is not consistent, however, no better fitting was obtained by trying different subsets of this set.
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Figure A.23: Central Meditwin fitting and predictions for Subject 11. Tests having consistent data used for fitting:
(1,2,4).
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Figure A.24: Central Meditwin fitting and predictions for Subject 12. Tests having consistent data used for fitting:
(1,2,3,4).
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Figure A.25: Central Meditwin fitting and predictions for Subject 13. Tests having consistent data used for fitting:
(2,3,4).
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Figure A.26: Central Meditwin fitting and predictions for Subject 16. Tests having consistent data used for fitting:
(2,3,4).
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Appendix B. MDTE Validation for All Individuals

The following figures display the MDTE validation results for all individuals other than Sub-
ject 1.

Figure B.27: MTDE validation for Subjects 2, 4 and 5. The blue shaded areas are the ±1.5 standard-deviation
envelopes around the MDTE mean prediction (plotted in red).
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Figure B.28: MTDE validation for Subjects 6, 7 and 9. The blue shaded areas are the ±1.5 standard-deviation
envelopes around the MDTE mean prediction (plotted in red).
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Figure B.29: MTDE validation for Subjects 10, 11 and 12. The blue shaded areas are the ±1.5 standard-deviation
envelopes around the MDTE mean prediction (plotted in red).
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Figure B.30: MTDE validation for Subjects 13 and 63. The blue shaded areas are the ±1.5 standard-deviation
envelopes around the MDTE mean prediction (plotted in red).
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Appendix C. Digital Trial Results for All Individuals

Figures C.31–C.40 show the BGL excursions resulting from the best dual wave, dual bolus, dual
wave with fixed duration, and single bolus strategies for all remaining individuals in the trial.

Figure C.31: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 2.

Figure C.32: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 4.

Figure C.33: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 5.

Figure C.34: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 6.

Figure C.35: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 7.
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Figure C.36: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 9.

Figure C.37: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 10.

Figure C.38: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 11.
Note that all results are identical to the standard bolus, which is the best strategy for this subject and meal ingested.

Figure C.39: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 12.

Figure C.40: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 13.
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Figure C.41: Best dual wave, split bolus, dual wave of duration 180 min and standard bolus strategies for Subject 16.
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